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Abstract: Aldol reactions of bidentate aldehydes and cis-l-arylsulfonamido-2-indanyl ester derived 
titanium enolates proceed with excellent syn-diastereoselectivities and good to excellent isolated 
yields. © 1997 Elsevier Science Ltd. 

Asymmetric aldol reactions are often utilized in the synthesis of complex organic molecules of 

biological importance. 1 Over the years, numerous studies led to the development of a number of 

effective methodologies for syn 2 and anti-aldol 3 reactions. Recently, we reported 4 cis-1- 

arylsulfonamido-2-indanyl ester derived titanium enolate anti-aldol reactions with high diastereofacial 

selectivity. In our continuing effort to understand the origin of anti selectivity, we have now 

established that the choice ofp-toluenesulfonamido group, the presence of indanyl ring and the choice 

of metal all are critical to observed anti-aldol diastereoselectivity. Furthermore, based on the possible 

transition state assembly, we speculated that the incorporation of a chelating substituent on the 

aldehyde side chain would alter the stereochemical outcome from an anti-aldol to a syn-aldol product. 

Herein, we report that indeed, the reactions of a number of ester derived titanium enolates with three 

representative bidentate oxyaldehydes proceeded with excellent syn diastereoselectivity (up to 99% 

de) with good to excellent isolated yields. The current methodology is convenient and has practical 

synthetic potential since either the syn or anti-aldol product can be prepared from the same chiral 

template in a stereopredictable fashion utilizing inexpensive and versatile titanium reagents. 5 

Enantiomerically pure 1S, 2R-sulfonamide 14 was converted to propionate ester 2a with 
propionyl chloride and pyridine in CH2C12 at 0°C for 1 h (84% yield). The acylation of 1 with 

hydrocinnamic acid and 4-methylvaleric acid with DCC and DMAP afforded the respective esters 2b 

and 2c in 85% and 74% yield. Various titanium enolates of 2a-c were generated by reaction of the 
respective ester with TiCI4 (1.2 equiv) in CH2C12 at 0-23°C for 15 min followed by addition of N- 

ethyldiisopropylamine (4 equiv) at 23°C and stirring of the resulting brown solution for 2 h. The 
titanium enolate was then added to the representative aldehyde (2 equiv) precomplexed with TiCk; 

(2.2 equiv) at -78°C and the mixture was stirred at -78°C for 2 h before quenching with aqueous 
NH4C1. As shown in Table I, aldol reactions of 2a-c derived titanium enolates with various 

homologous oxyaldehydes proceeded with excellent syn-diastereoselectivity whereas reactions with a 
representative aliphatic aldehyde such as isovaleraldehyde, proceeded with excellent anti- 
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diastereoselectivity. The syn-anti mixture ratio was determined by 1H NMR (400 MHz) as well as by 

reverse phase HPLC before and after chromatography. Aldol reactions of benzyloxyacetaldehyde 6 

Table 1. Aldol reaction of various esters 2a-c with representative aldehydes 

Entry Ester Aldehyde Compd a % Yield b Syn:Anti (3/4) c 

1. 2a  BnOCH2CHO 3a 84 98 : 2 

2. 2a BnO(CHE)2CHO 3b 51 98 : 2 

3. 2b BnOCH2CHO 3c 84 99 : 1 

4. 2b BnO(CH2)2CHO 3d 51 99 : 1 

5. 2b BnO(CH2)aCHO 3e 55 94 : 6 

6. 2c BnOCHzCHO 3f 83 99 : 1 

7. 2c BnO(CHE)2CHO 3g 56 99 : 1 

8. 2a  iBuCHO 4i 92 1 : 99 

9. 2b iBuCHO 4j 91 1 : 99 

10. 2c iBuCHO 4k 83 1 : 99 

aOnly isolated product; 3a (R=Me, RI=CH2OBn); 3b (R=Me, RI=(CH2)2OBn); 3c (R=Bn, 
RI=CH2OBn); 3d (R=Bn, RI=(CHE)2OBn); 3e (R=Bn, RI=(CH2)3OBn); 3f (R=iBu, 
RI=CH2OBn); 3g (R=iBu, RI=(CHE)2OBn); 4i (R=Me, R1=iBu); 4j (R=Bn, Rl=iBu); 
4k (R=tBu, RI=iBu); b Isolated yield after chromatography, c Ratios determined by IH-NMR 
and HPLC analysis before and after chromatography. Reaction time = 1.5-2 h. 

with propionate derivative 2a, hydrocinnamate derivative 2b and 4-methylvalerate derivative 2c have 

afforded virtually a single syn-isomer in excellent isolated yield. Similarly, reactions of these esters with 

benzyloxypropionaldehyde provided excellent syn-diastereoselectivity, but with relatively lower 

isolated yields. The aldol reaction of 2b with benzyloxybutyraldehyde 6 also afforded a syn-aldol 

product with slightly lower selectivity compared to other oxyaldehydes. In contrast, reactions of 

isovaleraldehyde with 2b and 2c have resulted in anti-aldol reaction with excellent anti- 

diastereoselectivity and isolated yields. 

The assignment of relative and absolute stereochemistry of various syn aldolates 3 (entry 1 to 7) 

was fLrmly established after removal of the chiral template. The comparison of 1H-NMR and 13C-NMR 

spectra as well as the optical rotation of the resulting acids 5 were compared against the authentic 

optically pure samples prepared utilizing the boron enolate 2a aldol reaction. 7 The removal of the chiral 

template was effected by exposure to hthium hydroperoxide in THF at 23°C for 2-3 h affording the 
corresponding [3-hydroxy acid in 84-95% yield. The chiral template 1 was fully recovered without loss 
of optical purity (¢tD23 +34.2, c 1.8, CHC13). Alternatively, the hydrolysis of aldol adduct can be 

carded out with aqueous lithium hydroxide in THF at 23°C. However, a much longer reaction time is 
required for complete hydrolysis (for 3, 18-24 h). 

To rationalize the anti-aldol stereoselectivities with monodentate aldehydes, we previously 4 

postulated a Zimmerman-Traxler8 type transition state model A in which the metalocycle is assumed to 
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S c h e m e  I : (a) CH3CH2COCI, pyridine, CH2C!2, 0°C, I h for 2a; RCO2H, DCC, DMAP, CH2C12, 
23°C, 18-24 h for 2b-c;(b) TiCht, iPr2NEt, 23°C then RICHO and TiCI4, CH2C12, -78°C, 2 h; 
(c) LiOH, 30% H202, TI-IF-H20, 23°C, 2-3 h. 

adopt a chair-like conformation with a possible g-stacking interaction between the aromatic rings. This 

model is the basis of our further speculation that the addition of a chelating substituent on the 

aldehyde side chain would resu]t in a transition state assembly such as B. 9 The observed syn- 

stereoselectivity of bidentate aldehydes is consistent with this postulated model. The present syn- 

stereoselectivity can also be explained by an acyclic transition state similar to that proposed by 

Gennari et al. 10 The enhanced selectivity for benzyloxyacetaldehyde and benzyloxy- 

propionaldehyde compared to benzyloxybutyraldehyde is most likely due to effective metal chelation 

through five and six membered transition states rather than a less favorable seven membered ring 

system. The involvement of crucial metal chelation was further evidenced by the fact that the reaction 

of enolate of 2a with tert-butyldiphenylsilyloxyacetaldehyde afforded a 70:30 mixture of syn/anti 

aldol products due to steric bulk of the surrounding ether oxygen which hinders effective chelation. 
The possible aromatic ~-stacking interaction in the transition state model is supported by 

Q ~  ....... ~ ""~ R O 1 ~ - ' "  I 
. . . . . .  

Me' A (Figure 1) Me B 

the fact that incorporation of methylsulfonamide in place of tosylsulfonamide in 2a resulted in a 

mixture (70:30) of anti/syn diastereomers with isovaleraldehyde (through B). Furthermore, removal of 

the indane aromatic ring in 2a also resulted in a mixture (50:50) of syn/anti diastereomers. 11 Further 
evidence for such a ~-stacking interaction is the subject of ongoing investigation. 
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In summary, an ester derived titanium enolate based highly selective (96-98% de) syn-aldol 
process has been developed. The reaction of the same titanium enolate with monodentate aldehyde 
however provides anti-aldol product with excellent diastereoselectivity. Thus, with proper choice of 
chiral template and aldehyde one can prepare either syn- or anti-aldol product in a stereopredictable 
fashion. Synthetic applications and mechanistic investigations are currently in progress. 
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